Pulsating Semi-waves in Periodic Media and Spreading Speed Determined by a Free Boundary Model

نویسنده

  • YIHONG DU
چکیده

We consider a radially symmetric free boundary problem with logistic nonlinear term. The spatial environment is assumed to be asymptotically periodic at infinity in the radial direction. For such a free boundary problem, it is known from [7] that a spreading-vanishing dichotomy holds. However, when spreading occurs, only upper and lower bounds are obtained in [7] for the asymptotic spreading speed. In this paper, we investigate one dimensional pulsating semi-waves in spatially periodic media. We prove existence, uniqueness of such pulsating semiwaves, and show that the asymptotic spreading speed of the free boundary problem coincides with the speed of the corresponding pulsating semi-wave.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular limit and homogenization for flame propagation in periodic excitable media

This paper is concerned with a class of singular equations modeling the combustion of premixed gas in periodic media. The model involves two parameters: the period of the medium |L| and a singular parameter ε related to the activation energy. The existence of pulsating travelling fronts for fixed ε and |L| was proved by H. Berestycki and F. Hamel in [BH]. In the present paper, we investigate th...

متن کامل

Uniqueness of monostable pulsating wave fronts for time periodic reaction-diffusion equations

Keywords: Reaction–diffusion equations Pulsating wave fronts KPP and monostable nonlinearities Uniqueness a b s t r a c t We establish the uniqueness of pulsating wave fronts for reaction–diffusion equations in time periodic media with monostable nonlinearities. For the Kolmogorov–Petrovsky– Piskunov (KPP) type nonlinearity, this result provides a complete classification of all types of KPP pul...

متن کامل

Sharp Estimate of the Spreading Speed Determined by Nonlinear Free Boundary Problems

We study nonlinear diffusion problems of the form ut = uxx+f(u) with free boundaries. Such problems may be used to describe the spreading of a biological or chemical species, with the free boundaries representing the expanding fronts. For monostable, bistable and combustion types of nonlinearities, Du and Lou [7] obtained rather complete description of the long-time dynamical behavior of the pr...

متن کامل

Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model

Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...

متن کامل

The Stefan Problem for the Fisher-kpp Equation

We study the Fisher-KPP equation with a free boundary governed by a one-phase Stefan condition. Such a problem arises in the modeling of the propagation of a new or invasive species, with the free boundary representing the propagation front. In one space dimension and the radially symmetric case in higher space dimensions this problem was studied by some authors. In both cases a spreading-vanis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013